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Abstract: Using the concave polyhedra of the second sort, we are creating spatial
structures in the shape of lattice panels to be applied in architecture. The pro-
cedure is based on a rectangular (or, less often, a polar) array of identical rep-
resentatives of the concave polyhedra that include: concave antiprisms, concave
cupolae and concave pyramids of the second sort. The selected representative,
as a unit cell, can be arrayed so to touch the adjacent cells by vertex, by edge or
by face. Thereby, they are forming 3D lattice, similar to the 2D lattices patterns.
We are using a single layer of these structures to form a shape most convenient
for architectural usage, which is a shape of a panel. These 3D lattice panels are
proposed to be used as brise-soleil, room dividers, fences, etc. The additional layer
of visual design when using such a panels is accomplished with the shadows they
cast, depending on the time and day of the year. 3D shape emphasizes the play of
light and shadow, so these lattice panels can have a significant role as an element
of decoration, i.e. architectural ornament.
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INTRODUCTION

Concave polyhedra of the second sort (abbreviated: C-1I-n) constitute of a group of polyhedra formed
over a regular n-sided base polygon, having a deltahedral lateral surfaces. This group includes: Concave
cupolae of the second sort:CC-ll-nM and CC-ll-nm’, Concave pyramids of the second sort: CP-Il-nM, CP
lI-nm2, and CP-11-nB® and Concave antiprisms of the second sort: CA-ll-nM and CA-ll-nm*.

The common feature of these solids is that their lateral surfaces consist of a double row of equilateral
triangles which can be assembled in two ways, making two different solids’ heights: major (C-1I-nM) and
minor (C-1l-nm). The geometrical regularities and a high level of symmetry that characterizes these poly-
hedra, makes them suitable for joining and combining, so they can be arrayed infinitely in space, in x, y
and z direction forming 3D lattice structures.

In the previous research, we have dealt with combining and compatibility of these solids, and even their
modularity® in case their bases are congruent. For certain representatives of these solids, the complete
overlap of some of their lateral faces occurs, so 3D tessellations can be formed.

In this research, we are using the experience gained in the previous ones, together with the results, to
propose a new set of 3D shapes organized as lattice panels. The shape of panel is chosen because it is one
of the most common and also most universal elements, ubiquitous in architectural design. The lattice
structure is chosen because it brings the geometric ornament to its expression, having the regularities
and simplicity in one hand, and the complexity and eye-appeal in the other.

The overview of the representatives of the concave polyhedra of the second sort that can be used as
unit cell in forming the 3D lattice panels is given below.

1. Concave cupolae of the second sort

Concave cupolae of the second sort (CC II-nM and CC Il-nm)® comprise of 14 representatives in total.
Each representative of these polyhedra consists of two regular polygons in the parallel planes: n sided
and 2n-sided, where 3=n<10, connected by deltahedral lateral surface.

1 M. Obradovi¢ and S. Misi¢,“Concave Regular Faced Cupolae of Second Sort”, in: Proceedings of 13th
ICGG, ed. G. Weiss, Dresden, 2008, El. Book: 1-10

2 M. Obradovi¢, S. Misi¢ and B. Popkonstantinovi¢,“Concave Pyramids of Second Sort -The Occurrence,
Types, Variations”, in: Proceedings of the 4t International Scientific Conference on Geometry and
Graphics, moNGeometrija 2014, ed. S. Krasi¢, Vol 2. M. Obradovi¢, S. Misi¢, B. Popkonstantinovi¢, M.
Petrovi¢, B. Malesevi¢, R. Obradovi¢: Vlasina, 2014, 157-168.

3 M. Obradovi¢, S. Misi¢ and B. Popkonstantinovi¢,“Variations of Concave Pyramids of Second Sort with
an Even Number of Base Sides”, Journal of Industrial Design and Engineering Graphics (JIDEG) — The
SORGING Journal, Volume 10, Special Issue, Fascicle 1, ed. D. Marin, Brasov, 2015, 45-50.

4 M. Obradovi¢, B. Popkonstantinovi¢ and S. Misi¢, “On the Properties of the Concave Antiprisms of
Second Sort”, FME Transactions. Vol. 41 No 3, (Belgrade), 2013, 256-263.

5 M. Obradovi¢, “Modularity of concave polyhedra of the second sort with octagonal bases”, in:
Proceedings of the 18th International Conference on Geometry and Graphics. ICGG 2018. Advances in
Intelligent Systems and Computing, Vol. 809. No1. Ed. L. Cocchiarella, Milan, 2018, 942-954.

6 M. Obradovi¢ and S.Misi¢, “Concave Regular Faced Cupolae of Second Sort”, in: Proceedings of 13th
ICGG, ed. G. Weiss, Dresden, 2008, El. Book: 1-10
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2. Concave pyramids of the second sort
Concave pyramids of the second sort, abbreviated: CP-Il-nM, CP-Il-nm” and CP-II-nB&, comprise of 17
representatives. Their double-rowed deltahedral lateral surface is assembled over a regular polygon,
which can be from a triangle to a nonagon. They can be formed with a larger number of triangles (5n) in
the lateral surface, which applies to each basis of 3=n=9 sides.
They can be also formed with a lesser number of triangles (3n) in the lateral surface, which applies only
to the base polygons with an even number of sides, ne{6, 8, 10}.

3. Concave antiprisms of the second sort

Concave antiprisms of the second sort (CA-Il-nM and CA-Il-nm)° can be formed over any regular poly-
gon, with the infinite number of members. They are formed with two congruent regular polygons in the
parallel planes, connected by the lateral deltahedral surface.

3D LATTICE STRUCTURE AS A SPATIAL GRID

3D lattices are three-dimensional structures made up of nodes (polyhedron vertices) and struts (polyhe-
dron edges) that form a spatial grid®, similarly to the 2D lattices. Such a lattice replaces solid fill, making

7 M. Obradovi¢, S. Misi¢ and B. Popkonstantinovi¢,“Concave Pyramids of Second Sort -The Occurrence,
Types, Variations”, in: Proceedings of the 4™ International Scientific Conference on Geometry and
Graphics, moNGeometrija 2014, ed. S. Krasi¢, Vol 2. M. Obradovi¢, S. Misi¢, B. Popkonstantinovi¢, M.
Petrovi¢, B. Malesevi¢, R. Obradovi¢: Vlasina, 2014, 157-168.

8 M. Obradovi¢, S. Migi¢ and B. Popkonstantinovi¢,“Variations of Concave Pyramids of Second Sort with
an Even Number of Base Sides”, Journal of Industrial Design and Engineering Graphics (JIDEG) - The
SORGING Journal, Volume 10, Special Issue, Fascicle 1, ed. D. Marin, Brasov, 2015, 45-50.

9 M. Obradovi¢, B. Popkonstantinovi¢ and S. Misi¢, “On the Properties of the Concave Antiprisms of
Second Sort”, FME Transactions. Vol. 41 No 3, (Belgrade), 2013, 256-263.

10 “Understanding 3D printed lattices: Performance and design”, Fast Radius 2020. https://www.fas-

tradius.com/resources/understanding-3d-printed-lattices-performance-and-design-considerations/
[accessed January 1. 2020.]
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the structure lighter, at the same time retaining structural rigidity. Usually, such a network is made up
of very simple polyhedral structures (cube, tetrahedron...), by their spatial packing (or 3D tessellation).

In this paper, for creating a 3D lattice, we use concave polyhedra of the second sort. Also, we extend the
notion of a 3D lattice so to include shell lattice structures' composed of triangular plates which represent
the faces of a polyhedron.

FORMING A 3D LATTICE PANEL

Although we can put together assorted members of the C-ll-ns in various ways in order to form 3D lattic-
es based on their close-packing'?, we focus on a single “layer” of such a structure, a panel-like 3D lattice.
It is generated by multiplication of the chosen unit cell, the selected C-lI-n representative, along the x-y
directions. In the z direction the lateral surfaces form a deltahedral structure which makes the thickness
of the panel (Fig. 1).

Fig.2

11 T. Maconachie et al.,“SLM lattice structures: Properties, performance, applications and challenges”,
Materials & Design, 2019, 108-137.

12 P Huybers, “Polyhedra for Building Structures, Why and How”, in: International Conference on Light-
Weight Structures in Civil Engineering, Warsaw, 1995, 25-29.
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3D LATTICE PANEL AS A SPACE TRUSS MADE BY ARRANGEMENT OF C-I

In order to create a 3D lattice panel, for the framework of the structure we use a chosen representative of
the concave polyhedra of the second sort (CA-1I-3M, in the Fig. 2) as a unit cell. By self-multiplication of
the unit cell in space we obtain a 3D lattice structure.
There are two ways to construct such a structure:

a) from rods that are continually linked one to another, building a spatial grid™ 4,

b) from triangular plates (as in'®) which represent the faces of the polyhedron.
In the case b, to obtain a lattice structure that lets the light pass through, we will omit the faces that rep-
resent the base polygons.

THE METHOD USED TO FORM A UNIT CELL

When we remove the base polygons from the C-1I-nM representatives selected to be used in the 3D lat-
tice formation, the unit cells become hollow, so they can create a honeycombed structure, more desirable
for the purpose of application. Then, observed in 2D, by applying symmetry transformations, we form
patterns similarly to the formation of wallpaper groups. In this way, we get visually interesting patterns in
2D, which transform into 3D lattice depending on the viewing angle.

The method we used is based on:

1. joining relevant vertices of the two adjacent units

2. connection of the edges of the two adjacent units

3. joining the faces of adjacent lateral surfaces so that they overlap.

USING 3D LATTICE PANELS AS A MATRIX FOR BRISE SOLEIL DESIGN

Brise soleil is an architectural element used on facades, over windows, as protection against sunlight and
heat, while also playing the decorative role of an architectural ornament itself'. With the well-known ef-
fects that 2D patterns (of a brisesoleil) produce in creating cast shadows, an additional layer of light and
shadow dynamics is now emerging. The light and shadows on the lateral faces, i.e. on the surfaces of these
structures in 3D array, adds a new, unpredictable dimension to the aesthetics and ornamental character
of these shapes. They look different depending on the time of day, the time of year, the lighting angle, etc.
The impression changes even depending on the distance from the surface on which the shadows are cast.

GEOMETRIC ORNAMENT IN ARCHITECTURE

By development of new building technologies, especially parametric design, geometric ornament returns
to the design of buildings on a large scale. Using the plays of symmetries with assigned modular tiles, a

13 Z.Z. He, et al., “Mechanical properties of copper octet-truss nanolattices”. Journal of the Mechanics
and Physics of Solids, 101, 2017,133-149, Fig. 1.

14 T. Li, et al., “Exploiting negative Poisson’s ratio to design 3D-printed composites with enhanced me-
chanical properties”. Materials & Design, 142, 2018. 247-258. Fig. 1.

15 T. Maconachie et al.,“SLM lattice structures: Properties, performance, applications and challenges”,
Materials & Design, 2019,108137. Fig. 4.

16 S. Tolson, Dictionary of Construction Terms, 2014, 40.
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simple geometric pattern can build a whole panel as an architectural element". Such 3D patterns have
already found a large application in architecture, so in this study we implement these experiences to new
forms, introducing slightly more complex shapes, but equally simple to perform. We suggest their appli-
cation as architectural elements: decorative panels, room dividers, brise soleil, etc., which change their
appearance depending on the viewing angle. They can be performed in a quick and easy way, not only as
3D prints, but also as prefabricated or even folded elements.

THE APPEARANCE OF THE CAST SHADOW OF THE BRISE SOLEIL
DEPENDING ON THE TIME AND DATE

Be it horizontal or vertical elements (e.g. pergolas or brise soleils), the influence of the angle of the sun
rays on the appearance of the cast shadows is essential. In Fig. 3 we see what the shadows look like on the
surface parallel to the 3D lattice panel, depending on the time of year and the time of day.

ORNAMENTAL 3D PATTERNS BASED ON CONCAVE POLYHEDRA OF THE SECOND SORT

In this section, we present key research findings: we provide a 3D lattice panels’ layouts made up of se-
lected C-1I-nM representatives. We have adopted only one variation, major type, to illustrate the process,
and to summarize numerous examples into a few essentials for the idea.

17 M. Stavricand S. Jablan, “Advanced geometry of modular tiles”, in: Generative Art conference GA 2011.
Ed. Roma, ed. C. Soddu, 2011, 344-357.
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Fig.5

1. Ornamental 3D patterns based on CA-1I-3M

For a clearer understanding of the methods and adherence to the geometric principles of forming a 3D
lattice panel in general, this research considers mainly the concave antiprisms of the second sort (CA-II-
nM) with a few examples involving cupolae and pyramids.
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b)
Fig. 6

In the first example, in Fig. 4, we see an arrangement of CA-11-3Ms touching by the vertices, thus building
a pattern that corresponds to the hexagonal lattice™.

2. Ornamental 3D patterns based on CA-1I-4M
With an arrangement of CA-II-4Ms, we can obtain various patterns, some of which are shown in the Fig.
5. By the combination of two methods: touching by vertices and overlapping the faces, they are generat-
ing patterns that correspond to:
a) Hexagonal lattice (Fig. 5.a) having a pattern that resembles cantellated hexagonal tiling or rhombitri-
hexagonal tiling (3.4.6.4.)'% 20
b)Square lattice (Fig. 5b), having a pattern that resembles truncated square tiling (4.8.8.).

3. Ornamental 3D patterns based on CA-lI-5M
With CA-1I-5M we can obtain 3D patterns that correspond to:
a) Rhombic lattice (Fig. 6a)
a) Irregular lattice resembling the method of Penrose tiling?! creation (Fig. 6b).
We can also play with shapes obtained so to form frames, rosettes, elements of irregular contours, etc. (Fig. 6).

4. Ornamental 3D patterns based on CA-II-6M, CC-1I-6M and CP-II-6M
Using CA-1I-6M we obtain 3D patterns that correspond to hexagonal lattice (Fig. 7). We can use various
ways of 3D lattice panels creation just by using this single unit element. Here we see an example of

18 D. E. Joyce, “Lattices”, web page of Clark University, Worcester, Massachusetts https://wwwz2.clarku.
edu/faculty/djoyce/wallpaper/lattices.html [accessed January 11. 2020.]

19 B. Griinbaum and G. C. Shephard, “Tilings by regular polygons”, Mathematics Magazine Vol. 50. Nos.
9 p gs by reg polyg g 5 5
(Washington D.C.), 1977, 227-247.

20 D.P Chavey, “Tilings by Regular Polygons - II: A Catalog of Tilings”, Computers & Mathematics with
Applications. Vol. 17 No 1-2. Elsevier, 1989, 147-165

21 R. Penrose, “The role of aesthetics in pure and applied mathematical research”, Bull. Inst. Math. Appl.,
10,1974, 266-271.
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Fig.7
connecting the cells by vertices, whereby a hexagonal 3D arrangement corresponds to pém wallpaper
group?? and again resembles rhombitrihexagonal tiling, or rhombihexadeltille*® (by Conway). Also, we
can halve the thickness of such a panel, due to transverse symmetry of the CA-Il. In doing so, we get a new
appearance not only of the panel itself, but also of the cast shadows.

The example which uses CC-1I-6M (given in Fig. 8) is the one with the edge connection of the 3D units.
Thereby, the pattern obtained also corresponds to the hexagonal lattice and to the pém wallpaper group,
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22 D. E. Joyce, “Lattices”, web page of Clark University, Worcester, Massachusetts https://www2.clarku.
edu/faculty/djoyce/wallpaper/wall17.html [accessed January 11, 2020].

23 J. H. Conway et al., The Symmetries of Things, CRC books, Boca Raton, 2008, p.263.
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but now resembles the truncated hexagonal tiling?* or truncated hextille?>. Moreover, we can supple-
ment this structure with CP-11-6Ms?®, which add a new layer to the plastic, and have an additional role in
blocking sunlight.

5. Ornamental 3D patterns based on CA-1-7M

The heptagon is more demanding for geometric combining compared to the previous bases. Tiling with
this polygon is not possible, but different plays with arranging heptagons in patterns are. We use the CA-
[1-7M circuits (Fig. 9) which, by applying rotational symmetry, give a rosette-like 3D structure.

Fig. 1

24 B. Grliinbaum and G. C. Shephard, “Tilings by regular polygons”, Mathematics Magazine Vol. 50. Nos.
(Washington D.C.), 1977, 227-247.

25 J. H. Conway et al., The Symmetries of Things, CRC books, Boca Raton,2008.p. 263.

26 M. Obradovi¢, S. Misi¢ and B. Popkonstantinovi¢, “Concave Pyramids of Second Sort - The Occurrence,
Types, Variations”, in: Proceedings of the 4t International Scientific Conference on Geometry and
Graphics, moNGeometrija 2014, ed. S. Krasi¢, Vol 2. M. Obradovi¢, S. Misi¢, B. Popkonstantinovi¢, M.
Petrovi¢, B. Malesevi¢, R. Obradovi¢: Vlasina, 2014, 157-168.
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Fig.13

6. Ornamental 3D patterns based on CA-11-8M, CA-11-8M and CP-11-8B
Using CA-1I-8M, we obtain 3D square lattice, resembling truncated square tiling. In Fig. 10 we see an
example of connecting the cells by faces (the example used in?”), whereby a hexagonal 3D arrangement
corresponds to pgm?® wallpaper group. Also, we can double the panel by shifting one level of the panel
eccentric to the lower level, thus getting another form of the structure itself. We can also add CP-1I-8Ms
to the matching octagonal openings, as in the example with CC-1I-6M, in order to add new sun shades.
In a couple of examples, we propose models of such structures that can serve as a visually interesting
ideas for design (or redesign) of the exterior and interior of the architectural objects (Fig. 11). Not only
the defined structure itself, but also its fragments can be used for this purpose. In this way we can design
fences, rum dividers, wall panels, etc.

7. Ornamental 3D patterns based on CA-1I-9M, CC-1I-9M and CP-11-9M

The nonagon has the same problem in plane tilling by regular, convex polygons, as heptagon does, but not
by other type of concave polygons, or with non-regular polygons. Thus, in this example, the connection
by vertices is the safest solution. We can also create a hexagonal lattice (Fig. 12a) and a rosette (Fig. 12b).
Now, due to the looser fit of the nonagons, there is more space between the CA-1I-gM unit cells, so the
more light gets through this 3D lattice panel.

27 M. Obradovi¢, “Modularity of concave polyhedra of the second sort with octagonal bases”, in:
Proceedings of the 18th International Conference on Geometry and Graphics. ICGG 2018. Advances in
Intelligent Systems and Computing, Vol. 809. No1. Ed. L. Cocchiarella, Milan, 2018, 942-954.

28 D. E. Joyce, “Lattices”, web page of Clark University, Worcester, Massachusetts https://www2.clarku.
edu/faculty/djoyce/wallpaper/walli1.html [accessed January 11, 2020].
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Fig. 14

In the example with CC-1I-9Ms (Fig. 13) the edge-connection provides a pattern corresponding to the
hexagonal lattice. We can also add CP-11-9Ms to the matching nonagonal openings, as in the example with
CP-II-6, to add new sun shades and a new visual effect.

VARIATIONS

The thickness of the panel can be halved in some cases (the ones that use antiprisms), so we get a thinner
structure with “face” and “back”, having different tessellations of polygons emerging on them (Fig. 14). As
an artistic intervention, these panels can be modified by joining deltahedral surfaces of other C-ll-ns onto
the compatible bases, whereby we add another layer of patterns to the resulting structure.

CLIMATE RESPONSIVE FACADES

3D patterns and lattices are currently experiencing real boom in the design and industry, thanks to the 3D
printing capabilities. As for architecture, they can be applied not only as an element of ornamentation,
but also as a functional component of the project, especially concerning climate responsive facades?. In
Fig. 15, we see an example of Al Bahar Towers, Abu Dhabi, (by Aedeas Architects 2012.)3° which shows the
potential of deltahedral 3D lattice panels in its full splendor.

DIRECTIONS FOR FUTURE RESEARCH

Due to the simplicity of the C-ll-ngeometry, 3D structures made as compositions of such unit cells are
feasible and easy to perform in terms of production and assembly.

They are achievable not only with 3D printing, but can also be manually assembled or folded like origa-
mi, which allows the use of a much wider range of materials.

What makes an additional convenience in using the C-1l-ns as unit elements is that their faces, regular
polygons, allow and provoke various plays with symmetries. With a skillful composition of these patterns,

29 G. Shashank, “Climate responsive Building Facade”, Behance.net https://www.behance.net/gal-
lery/36375797/Climate-Responsive-Building-Facade Behance.net [accessed January 11, 2020]

30 K. Cilento “Al Bahar Towers Responsive Facade / Aedas”, Arch Daily, September 05. 2012. archdaily.com
https://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas [accessed January 13, 2020]
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Fig.15

and even by combining the members with congruent base polygons, but minding the symmetry of the
pattern itself, an additional level of decorative design opens.

If we want to soften the sharp edges and introduce curved lines into these forms or do any other mod-
ification of the form, we can do this during modeling process, via tools of the software we use, and then
produce the structure through 3D printing.

Examining the 3D lattices formed in the manner described above, along with their aesthetic dimension,
the question of their static behavior arises. This is another issue that needs to be resolved.

One of the aims of the paper is to point out the possibilities offered by C-l1l-n geometry in artistic (visual
and decorative) sense, linking the geometrical generation of 2D and 3D patterns with architectural design.
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ILLUSTRATIONS

1: 3D lattice and 3D lattice panel formed of CA-1I-8Ms

3/ pewerka v 3[] pewweTkactv naHen cactaembeH of CA-11-8M-oBa

2: 3D lattice panel as a space truss made by arrangement of CA-1I-3Ms

3[1 pelueTkacTv NaHe Kao NPOCTOpHa peLleTka cadrheHa pacnopenom suiue CA-1-3M-oBa

3: The appearance of the cast shadow of the brise soleil based on the CA-1I-3M depending on the time and date
H3rnen 6ayeHnx ceHkr bpuconeja 3acHoBaHHx Ha CA-11-3M, y 3aBHCHOCTH ol BpeMeHa W AaTyma
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4: 3D lattice pattern based on the CA-1I-3M and the shadows they cast depending on the time of day
O6pa3al, 3/ petuertke 3acHoBaH Ha CA-11-3M w ceHke Kkoje 6aua y 3aBMCHOCTH of, fioba faHa
5: 3D lattice pattern based on the CA-1I-4M and the shadows they cast depending on the time of day, a) hexagonal
lattice, b) square lattice
O6pa3al, 3[] peluetke 3acHoBaH Ha CA-1I-4M 1 ceHke koje 6aLla y 3aBUCHOCTH of, fioba faHa, a) LecToyraoHa
pelueTka, 6) KBagpaTHa peLueTka
6: 3D lattice pattern based on the CA-1I-5M and the shadows they cast, a) rhombic lattice, b) Irregular lattice
resembling the Penrose tiling
Ob6pa3al, 3[] peluetke 3acHoBaH Ha CA-II-5M 1 ceHke Koje baua y 3aBUCHOCTH of, Aoba AaHa, a) poMbHUHa peLueTka,
6) HempaBH/Ha peLLeTka Koja noaceha Ha MeHpoys nonnoyasatse
7: 3D lattice pattern based on the CA-II-6M and the shadows they cast, hexagonal lattice
Ob6pasal, 3[] peluetke 3acHoBaH Ha CA-1I-6M w cetike Kkoje bauia, LecToyraoHa peLueTka
8: 3D lattice pattern based on the CC-1I-6M and CP-II-6M, and the shadows they cast, a) truncated hexagonal tiling
—like pattern, b) the same pattern filled with CP-1I-6Ms
O6pasal, 3[] peluetke 3acHoBaH Ha CA-1I-6M n CP-1I-6M 1 ceHke Koje bauajy; a) obpasall koju HanrKyje 3apybrbeHoM
LLIeCTOYraoHOM rornoyaBay, 6) UcTh obpasall, nonyreH CP-11-6Mosrma
9: 3D lattice pattern based on the CA-1I-7M and the shadows they cast
Ob6paszat, 3] peleTke 3acHoBaH Ha CA-11-7M u ceHke Koje 6aua
10: 3D lattice pattern based on the CA-II-8M and the shadows they cast
O6pasal, 3[] peluetke 3acHoBaH Ha CA-11-8M u ceHke koje baua
11: Ideas for design (or redesign) of the exterior and interior of the architectural objects
Haneje 3a ousajH (Mnu penusajH) ekcrepujepa M eHTeprjepa apXMTEKTOHCKHX objekaTa
12: 3D lattice pattern based on the CA-11-9M, a) hexagonal lattice, b) rosette
Ob6pasal, 3[] peluetke 3acHoBaH Ha CA-11-9M; a) wecToyraoHa pelueTka, 6) poseta
13: 3D lattice pattern based on the CC-11-9M and CP-II-9M
Ob6paszal, 3[] peweTtke 3acHoBaH Ha CA-II-9gM u CP-1I-gM
14: Variations of the 3D lattice panels — halved in thickness
Bapwjauuje 3/] peluetiactix naHena — npenonosbeHe febrbrHe
15: The examples of climate responsive facades:
1. The Al Bahr Towers by Aedas Architects, Abu Dhabi, 2012. https://architizer.com/blog/practice/details/x-factor-
construction/
2. The Al Bahr Towers by #AHR (former Aedas Architects), Abu Dhabi, 2012. https://twitter.com/tile_select/
status/828655581271568384
3. Detail of Sun responsive fagade, https://www.boredpanda.com/geometric-sun-shades-al-bahar-towers-abu-
dhabi/?utm_source=google&utm_medium=organic&utm_campaign=organic
4. Henning Larsen's university building has a facade that moves in response to changing heat and light, https://
www.dezeen.com/2015/07/14/henning-larsen-syddansk-universitet-sdu-kolding-campus-building-denmark-
green-standards-university/
Mprmepw dacana Koje pearyjy Ha KITMMaTCKe YCoBe:
1. Kyne An Baxp apxutekarta Aegaca, Aby [labu, 2012. https://architizer.com/blog/practice/details/x-factor-
construction/
2. Kyne An baxp aytop #AXP (6usLun apxutektv Aepac), Aby [labu, 2012. https://twitter.com/tile_select/
status/828655581271568384
3. Hetan dacane Koja pearyje Ha cyHue, https://www.boredpanda.com/geometric-sun-shades-al-bahar-towers-
abu-dhabi/?utm_source=google&Gutm_medium=organic&utm_campaign=organic
4. YHWBep3uTeTCcKa 3rpafa XeHuHra JlapceHa ca dacanom koja ce kpehe kao 0AroBop Ha MpOMeHy TornsoTe H
cBetnocTy, https://www.dezeen.com/2015/07/14/henning-larsen-syddansk-universitet-sdu-kolding-campus-
building-denmark-green-standards-university/
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ABBREVIATIONS

C-ll-n - concave polyhedron of the second sort

C-1l-nM - concave polyhedron of the second sort, major type
C-ll-nm - concave polyhedron of the second sort, minor
CA-1l-n - concave antiprism of the second sort

CA-ll-nM - concave antiprism of the second sort, major type
CA-ll-nm - concave antiprism of the second sort, minor type
CC-ll-nM - concave cupola of the second sort, major type
CC-ll-nm - concave cupola of the second sort, minor type
CP-1I-nM - concave pyramid of the second sort, major type
CP-ll-nm - concave pyramid of the second sort, minor type
CP-1I-nB - concave pyramid of the second sort, type B

pbm — wallpaper symmetry group 17 (lattice type:hexagonal)
p4m - wallpaper symmetry group 11 (lattice type:square)

Mapwja B. Obpanosuh

Cnodopan X. Muwuh

30, PELLETKACTH NAHE/TH BASUPAHH HA KOHKABHHWUM MNOJIHEAPHMA OPYTE BPCTE:
UOEJE 3A APXUTEKTOHCKE OPHAMEHTE

Pesnme: KoHkaBHH nonuenpw apyre Bpcte Mory ce KOPUCTHTH 3a CTBapakbe CTPYKType koja MMa kapakTepH-
CTHKe TpofMMeH3HOHarHe pelueTke. [onreapu bopMHpaHH y jelHOM CNojy reHepuLly pelleTkacTe nioye
KOje ce MOry KOPHCTHTH Kao reOMETPHjCKH OPHAMEHT Y apXHTEKTYpH ca oapeheHHM ecTeTCKHM KBanHTETH-
Ma, NonyT BUCOKOT HHBOA cHMeTpHje. Mcnutanu cmo koHkasHe nonueape apyre spcte (C-11-n) ca basama op,
n=3 po n=9 ga ducmo mnycrposanu metony. Koprctnnu cmo yrnasHom CA-lI-nM, jep cy mHxoBH oMoTauu
MoroAHH1jH 3a MefycobHo noBesuBame Hero NonvedpH ca ABe pasnvyuTe dase, MOMyT KOHKABHHX Kymora.
PeweTkacTa cTpyKkTypa naHena nodwja ce usdaLmparbeM NpaBHIHKX NoneAapa hHXOBUX OCHOBA.

CBakH npepncTaBHUK NocMaTpaHor y3opka KoHKaBHHX nonueapa apyre spcre (C-1l-n) moxe ce TpeTupath kao
jenrHnuHa henuja 3a kpenpare 3] pelueTtkacte nnodye. MoBe3aHoOCT jeauHHYHKX henuja Moxe SKUTH BpXxo-
BHMMa, MBHLIAMA WIIH LIEIOM MOBPLIMHOM PafiMBHOT jeAHaKOCTpaHHYHOr Tpoyrna. Hekn on nodujenux 3/
odpasaua onrosapajy 2[] peluerkama, KBaapaTHUM, LLIECTOYTaOHHM W reoMeTpHjama pomda, AOK OHW [0OH-
jeHW o CTpaHe LLeCTOyraoHWX M CeiMOyraoHHX NpeacTaBHHUKa oAroBapajy posetama. OBe CTpykType mory ce
KOPHCTHTH Kao apXHTEKTOHCKH €IeMEHTH KOju KOMOHHYjy bYHKLM]Y W ilekopaLiHjy, Kao LWTo cy: dprconeju,
BepTHKasIHEe yKpacHe Msioye, Nperpage y eHTepujepy W ekctepujepy, orpaae, neprone, uta. 36or npucyTHe
MOJyNapHOCTH, jeIHaKOCTPaHHYHHX TPOYINOBa Kao hUXOBHX FpafiMBHHX efleMeHaTa, norofHe cy kao Moryhu
Aw3ajH 3a droknumatcke dacage.

KrmbyuHe peun: nentaepap, peluetka, aHTMNpH3Ma, TpOyrao, Tecenatija, apxuTekTypa, dpuconeju.
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